
• N9.4-11 430
Reuse -- A Knowledge-Based Approach

Neil Iscoe, Zheng-Yang Liu, Guohui Feng
EDS Research, Austin Laboratory

1601 Rio Grande, Ste. 500

Austin, Tex&_ 78701
(512) 477-1892

iscoe (q_austin.eds.com

© Copyright 1992, EDS

Introduction

Although empirical field studies [Curtis 88] have shown that application domain knowledge is
critical to the success of large prqiects, this knowledge is rarely stored in a form which facilitates its

use in creating, maintaining and evolving software systems. The reason for this is that application
domain knowledge is implicitly embodied in application code rather than explicitly recorded and
maintained in separate documents. Even when documents are maintained separately from the code,
the knowledge is stored in voluminous natural language documents in an informal rather than a formal
manner. Although problem-specific languages, sometimes called 4th generation or nth generation

languages, are designed to remedy this situation, these languages capture domain-specific knowledge
in an ad hoc manner which usually does not allow the results to be generalized or even replicated.

Capturing and managing this knowledge is a prerequisite to reusing components in software

development.
Consider EDS, a company which produces large software systems for a variety of industries such

as utilities, finance, or health insurance. Associated with each industry area is a body of knowledge

which is critical to specifying and implementing software systems. This knowledge includes legal,
financial, technical, and other expertise which is acquired by personnel over a period of many years.

EDS is organized into strategic business units (SBUs) so that the business unit's knowledge about a
particular industry can be leveraged through reuse of application knowledge. Although organizational
management is an efficient and effective method of gaining productivity, additional gains can be
realized by automating portions of the software production cycle.

While system engineers make extensive use of several existing CASE tools, these tools help
streamline but do not substantially change the mapping process from concept to implementation. The

problem is that today's methodologies, languages, and CASE tools do not take advantage of the
domain-specific knowledge associated with particular industries. This is because this knowledge is

rarely available in a form in which it can be reused.
We are attempting to capture the domain-specific knowledge about different industry areas as a set

of application domain models. Application domain models are representations of relevant aspects of
application domains that can be used to achieve specific software engineering operational goals such
as elicitation of specifications, code generation, and reverse engineering. Operational goals are
always implicit in the construction of a domain model and are essential to understanding the form and
content of that model. Unlike generalized knowledge representation projects such as Cyc [Lenat 90]

that attempt to provide a basis for modeling encyclopedic knowledge, domain modeling explicitly
acknowledges the commonly held view [Amarel 68] that representations are designed for particular
purposes. These purposes--the operational goals--inherently bias any particular solution and dictate
the final form of the model.

Many different operational goals and modeling projects are being pursued within the field of
domain modeling [Iscoc 9 ! I. A model is the result of conscious decisions about what to describe and
what to ignore. No model is complete or correct in the sense that it is applicable to all tasks. Domain

models in our system are structured to represent the type of information that is used within EDS SBUs
to achieve our operational goals. Although EDS serves a wide range of industries, we are not

attempting to model real-time or other application areas which diverge from standard business

-1-

SEL-92-O04 page 181

transaction processing. However, we are modeling all the aspects of these programs which include
the rules, integrity constraints, type definitions, and policy decisions.

Figure 1 illustrates our view of the process. First, in order to build a domain model, we must
acquire domain-specific knowledge from various sources and synthesize it into a domain model. At
this stage, we focus on digesting, understanding, and formalizing the gathered information. Second,
in order to build specification models for various applications, we must select relevant pieces of
domain knowledge fi'om the domain model. In this phase, we concentrate on tailoring general domain

knowledge to the specific application at hand.

i

Other
Source

Code I Source

_ I 1_ Specs

j: _._____ DomainData J l - '

I_ _ SynthesisJ
Reverse _ Knowledge
Engineering _ Acquisition

Application Domain Model I

Customer/

Scenario Model (/ _ynrd_lesls _._ -- .. Application

Formulation _ Designer

IZ',::,

Figure 1 -- Software Synthesis

Our approach to gathering domain knowledge is based on synthesizing information through a
combination of manual, semi-automated, and automated techniques. Manually acquiring application

knowledge by interviewing domain experts is a laborious, costly, and error-prone process.
Consequently, we attempt to reverse engineer all relevant existing application artifacts and use experts
only when necessary to make sense out of and resolve conflicting information, to supply missing
information, and to add new knowledge to the model.

The reality of program development is that relatively few programs are ever conceived entirely
from scratch. Instead, they are created within the context of existing manual and automated systems.

New application programs are created because technological, regulatory, economic, and other
business and societal reasons make existing programs obsolete. Although old pro.grams are generally
outdated and archaic they still provide a potential source of information. The poruons of the
knowledge acquisition process which we are automating are driven by the availability of existing
source code, data models, and other machine-readable sources of specifications such as data
dictionaries.

In Figure 1, the double-headed an'ow between the top synthesis oval and the application domain
model rectangle indicates that the application domain model is also used as a source of information in

the synthesis process. As in any bootstrapping process, the more a system knows, the easier it is to
load with additional information. At this stage of the synthesis process, human interaction is supplied

by application or "'subject matter" experts who have specialized knowledge of an application domain

SEL-92-004 page 182

gained through exposure to multitudes of programs within an application area. A Truth Maintenance
System and Theorem Prover ensures domain model consistency and generates queries to the designer
concerning potential inconsistencies. The final result of the first stage of the software synthesis

process is an application domain model.
The next stage of synthesis is the production of actual application specifications. Although the

programs within a specific application domain share the same general legal, physical, and economic
constraints, the construction of any particular program specification depends upon a localized set of

specification decisions driven by the enduser or customer. Furthermore, requirements and their
resultant specifications change. Even when specifications are co_ectly gathered and refined, the
nature of most real world applications is that requirements and specifications evolve throughout the

existence of a program. These modifications are neither caused by the sometimes mercurial nature of
endusers nor by sloppiness in the original design process but are the result of natural occurrences such
as workload modifications, environmental changes, new technologies, economic disturbances, legal

mandates, and so on, that remove old requirements and create consequent new specifications.
The bottom portion of Figure 1 illustrates that multiple specification models can be created within

an application domain. These "models" or application program specifications are consistent and
correct with respect to the application domain model although they themselves may not be consistent
with each other.

Implementation

Figure 2 is a schematic view of the knowledge acquisition synthesis system which is implemented
using X windows on a SPARC II client/server architecture. Domain experts interact with the system
to store their knowledge into a domain model. The an'owheads attached to the languages at the

bottom portion of the figure show our interactions with particular specification languages. Domain
and specification model consistency is maintained by a specialized theorem prover. The theorem
prover, STR+ VE, is an upgraded version of the prover presented in [Bledsoe 80] for proofs of
theorems in general inequalities. A specialized inconsistency detection and correction system [Feng

93] is being constructed to interface between the modeling system and the theorem prover.

! [iot-if l..(T..,h
#, ,,=r, s.,o. j

Motif L

I_ I -._:r2 Server Tr tJ d._.

I Motif _ / (Resolution• I_ _I 'rh_o,-,_m /
I_ j u...,,.n _.. .if- "_ _'.,v_r J

EXI'RESS Inca/C, DM

Other

Specification
Languages

Figure 2 -- Schematic Knowledge Acquisition System

SEL-92-004 page 183

Dynamic Knowledge Structure

Hierarchies are a natural way to view and organize information and, at some level of abstraction,

are a part of most object-oriented and knowledge representation languages. Although hierarchical
organizational strategies provide a reasonable way to structure knowledge within complex domains,
the creation of a hierarchical structure, like any type of representational scheme, imposes a particular
view of the world. Unfortunately, the simplicity of the concept can sometimes obscure the semantics

that a model is attempting to capturc. By carefully analyzing cases and building the appropriate

subtypes, a variety of entity-relationship and object-oriented modeling and programming techniques
can be used to capture information [Booch 91].

When the project is small and the view is simple, or when the world is static and the view doesn't
change, a static hierarchy is a reasonable way to represent cases. But in large projects, there is no
particular view that is optimal for every class of enduser or every application program. When all
possible partitionings are made explicit, case transparency becomes impossible. The monolithic tree
structure created by case expansion obscures relevant and interesting cases. Furthermore, program

specifications change at a rapid enough pace that static hierarchies are not sufficient to capture the
process of system evolution. A paradox of object-oriented approaches is that well adapted structures

are not adaptable to new situations.
As an example, consider software systems that manage the payment of health insurance claims.

Although conceptually simple, these systems--like all business transaction systems--must contain

detailed processing information necessary to handle hundreds of thousands of different cases created
by the appropriate partitioning of dozens of attributes such as gender, marital_status, age,

previous_condition, employment, deductibles, copayments, prognosis, and so on.

A

7 ed

Male Female

Sin_e

Male_male

Marital

Status

Gender

Days Insurance
In Effect Prior

To Full Term

Delivery

Years employed

Figure 3 -- Eligibility for Maternity Benefit $

Figure 3 is a hierarchy that represents only lkmr attributes and their relevance to
Materni_._benefit$ in a company's health insurance policy. The circled leaf nodes represent cases.
Dollar signs within circles represent benefit eligibility while the slash marks represent cases in which
the employees are ineligible to receive maternity payments. In this particular case, marital status has
no effect on eligibility. Gender is obvious enough to be ignored in the case of maternity benefits but
is included in this and a variety of other health claim cases as an additional check against errors and
fraudulent claims. Finally, Days Instlrance In Effect Prior To Full Term Deliver3, (DIPFT) is used to

SEL-92-004 page 184

create two groups; females with greater than or equal to 210 DIPFT receive benefits while those less
than 210 DIPFF do not. However, if an employee has worked for the company for more than two

years, the DIPFT restriction does not apply.
Figure 3 can be simplified to Figure 4 which eliminates the irrelevant attribute of marital_status

and shows only the relevant decision nodes. In this uncomplicated example, the dollar eligibility for

maternity benefits can be determined by the examination of only three attributes. Although Figure 4
is simple, it is easy to see how with only two dozen binary style attributes the complete specification

hierarchy contains a combinatorial explosion of over ten million leaf nodes. This type of
representation makes subtl'Ce identification and case analysis difficult and bug correction a painful

case-by-case (node-by-node) process.
Term subsumption systems such as CLASSIC [Borgida 89] automate this process by determining

the place in a hierarchy in which terms are subsumed. But subsumption systems assume a single
structure in which all sub-models can belong. In the case of applications such as health insurance,

individual program module specifications may have different hierarchical structures and still maintain
the integrity and constraint rules of the domain model.

Male Female Gender
/

®
>_2 <2 employed

(_ Days Insurance
In Effect Prior

<210 >_210 To Full Term

_) Delivery

Figure 4 -- Simplified Maternity Benefit Hierarchy

Our approach is to dynamically create the appropriate minimal hierarchical structure at the time
that it is necessary to view a model or create a specification. This accomplishes two goals. It gives
domain experts and program designers a more focused way of viewing application specifications, and
it assures that the completed specifications will always contain the necessary attributes and value
constraints.

Attributes

In order to automate the creation of minimal hierarchies such as the one shown in Figure 4, we

begin with a careful consideration of the data elements or attributes that are used to distinguish cases
from one another. For the purposes of this paper, assume that a class is a type definition which is used

to instantiate objects (i.e. Person is a class; Jim and Suzy are objects). One way to view an attribute is
as a function which defines how a set of objects is mapped within a class. As an example consider the

attribute gender as a function which separates people into categories--males and females. This type
of attribute is a total function over the class of people. That is, it applies without qualification to all

people within the model.

SEL-92-004 page 185

Unlike total functions, partial functions do not apply to all obiects within a class and have

consequent restrictions placed on their usage. Maternit3.,_benefit$'is a partial function which only
applies to females who have been employed for two years or who have greater than 210 DIPFT. The
necessary constraints for the correct application of partial functions is one of the items captured by a
domain model.

We capture information about total and partial functions in terms of conditional and unconditional
attributes. As illustrated in Figure !, domain models contain information which is used to create a

variety of specification models. Although total functions apply to all objects of a class, not all
attributes need appear in a particular class. Attributes which must appeal" in a class such as

social security_number for an employee, or weight and sales_price for an inventory item are
differentiated fi'om those which although they ale independent of other attributes might appear in a

class. A must_have attribute At trib is an attribute that is required to occur in class

Ent ity_Class for all specification models. It is represented formally as follows:

(must_have Entity_Class Attrib)

--_Vspec_model (used spec_model Entity_Class Attrib)

An applicable At t rib is an attribute that is not necessarily included in all specification models.
However, it is included in the domain model because it has been observed in at least one specification

model.

(applicable Entity_Class Attrib)

--_3spec_model (used spec_model Entity_Class Attrib)

Conditional applicable attributes are partial functions such as Maternity_benefitS. In general they
are defined in such a way that their selection by an application designer forces the use of the attributes

which are required for their p,'oper invocation. The formal definition of cond_applicable is as
follows:

(cond_applicable Class Attr (P a

-_Vspec_model, object

((used spec_model Class Attr)

-9

(used spec_model Class a) A

((instance class object) A

(<> (attr object) UNDEF)

val))

-9 (p (a object) val)))

lnstantiating the definition with Person for Class, Maternit3.'_benefit$ for Attr, and (& (= Gender

Female)(OR (>- DIPFT 210) (>- Years_employed 2))) for (P a val) yields:

(cond_applicable Person

Maternity_benefitS
(& (= Gender Female)

(OR (_ DIPFT 210)

(_ Years_employed 2))))

Theimplicationthenproducesthelbllowingrepresentation whichcontainsthein_rmation which

wasusedtoproducethcsimplifiedhierarchyshownin Figm_4.

(--.) (used spec_m Person Maternity_benefitS)

((used spec_m Person Marital_status) A

(used spec_m Person Gender) A

SEL-92-004page186

(used spec_m Person Years_employed) ^

((instance Person object) ^

(<> (Maternity_benefitS object) UNDEF)

-9(& (= (Gender object) Female)

(OR (>_ (DIPFT object) 210)

(> (Years_employed object) 2)))).)
The preceding representation is also used directly by the automated theorem prover to refuse to

allow inconsistent assertions to be made. For example, an assertion such as

(applicable Person Maternity_benefitS)

would not be allowed because Maternit3,_benefit$ is a partial and not a total function.

Reverse Engineering Data Models

We use reverse engineering to build domain models by analyzing the data gathered from the
applications of an entity-relationship-based CASE tool that is used by EDS SBUs for data modeling
and code generation. By analyzing these data models, we have access to tens of thousands of specific
descriptions of entities, relationships, and constraints which have been used to specify application
programs. The knowledge acquisition process via reverse engineering is assisted with automated
tools that identify the classes of objects, relationships, and events of the application domain. It
translates existing data models with enhancements by producing dictionaries of data elements, classes,
and constraints. Four types of enhancements are made:

• Restructuring--Attributes of a class grouped as must_have, applicable, and

conditional_applicable attributes.
• Clustering--A set of data elements as a conceptual unit.
• Retyping--Entities and relations into classes. Data elements into scaled attributes.

° Input from Domain ExpertmNew features, measurement, constraints.
We are also attempting to reverse engineer source code to capture additional constraints. Our

ongoing reverse engineering work has other subgoals besides instantiating domain models. While this
proiect can currently produce data element and class definitions, it is not yet capable of producing

more sophisticated domain modeling information.

Interactive Process

In our approach, the process of extracting specific application domain knowledge is interactive so
that, at points, a domain expert can oven'ide the system's choice and provide new information. For
example, each data element is assigned a set of constraints reflecting the domain requirements and is

represented as a scale of measurement. A quantity data element is described with min and max
values, dimension, measurement unit and granulari_.. When these pieces of information are not
available in the original code, the system makes a guess by analyzing the textual description

associated with the data element through a key-word recognition method. For example, when a data
description contains any of the words "miles, distance, width," then the program guesses that the
quantity is of dimension length. Sometimes, more than one guess is possible. In this case, the system
prompts the user for input. The system remembers the user's choice and incrementally expands its
key-word bank. If a similar situation occurs later on with another data element, the information would
be used in determining the properties of the other data element. For each dimension, there is a set of
corresponding measurement units, such as "meter, centimeter, foot, inch" and so on for length, from
which the user is free to choose to assign to a quantity data element of the dimension.

Two advantages of this representation are apparent. First, the system ensures that the data are
used in accordance with their definitions. For example, a careless mistake of adding a quantity of

dimension length to another quantity of dimension time will be caught. Most CASE tools available
today cannot catch these kinds of problems simply because they do not represent the knowledge.
Second, we can expand the range of an application program by allowing a customer to choose his or
her preferred choice of expression, as long as a data element does not violate its given constraints.

SEL-92-004 page 187

For example, given a length data element, one can choose either mile, or kilogram, or any other unit in
the dimension as the measurement unit. The system can easily tran. slate different units within a

dimension.

Summary

This paper has described our research in automating the reuse process through the use of

application domain models. Application domain models are explicit formal representations of the

application knowledge necessary to understand, specify, and generate application programs.
Furthermore, they provide a unified repository for the operational structure, rules, policies, and

constraints of a specilic application at'ca.
In out" approach, domain models arc expressed in terms of a transaction-based meta-modeling

language. This paper has described in detail the creation and maintenance of hierarchical structures.
Thesc structures arc created through a process that includes reverse engineering of data models with

supplementary enhancernent from application experts. Source code is also reverse engineered but is

not a major source of domain model instantiation at this time.
In the second phase of the software synthesis process, program specifications are interactively

synthesized from an instantiated domain model. These specifications are currently integrated into a
manual programming process but will eventually be used to derive executable code with mechanically

assisted transformations.
This research is performed within the context of programming-in-the-large types of systems.

Although our goals are ambitious, we arc implementing the synthesis system in an incremental
manner through which we can realize tangible results. The client/server architecture is capable of

supporting 16 simultaneous X/Motif users and tens of thousands of attributes and classes. Domain
models have been partially synthesized from five different application areas.

As additional domain models are synthesized and additional knowledge is gathered, we will

inevitably add to and modify out" representation. However, out" current experience indicates that it

will scale and expand to meet our modeling needs.

Acknowledgments

We wish to thank Betty Milstead, Srinivas Nedunuri, and Britt Yenne for their comments on

earlier drafts of this paper.

References

Agrcsti, W. (1986). "'What arc Ihc new paradigms?" itl New ParadignLs.fi_r Software Development (eds. Agresti, W.W.),

IEEE (.omputc Society, W_Lshington, I).C.. 6-10.

Agresti, W. (1986). "'Framework for a flexible development process" in New Paradigms for Software Development (eds.

Agresti, W.W.), IEEI- Computer Stx:iety, Washiagton, D.C., 11-14.
Amarel, S. (1968). "'On representations of problcms of reasoning about actions" in Machine Intelligence, American

Elsevier, New York.
Barstow, D.R. (1984). "'A display-oriented editor for INTERLISP" in Interactive Programming Environments, McGraw-

Hill Bt_k Comp_my, New York.

Bledsoe, W.W. and Hines, L.M. (1980). "Variable elimination and chaining in the resolution-base prover for
inequalities" in Proceedings t?i't!le 5th Con._,rence on Automated Deduction, Springer-Verlag, Les Arcs, France, 70-

87.
Btvehm, B. (1976). "'Software cugincering'" in I1"!?1? Transactions on Computers, Vol. C-25, No. 12 (December 1976),

1226-124 !.
Bt_x:h, G. (1991). Object-Oriented Design with Applications. Colorado Springs, CO: Benj_unin/Cummings Publishing

Company, 1991.
Borgida, A., Brachman, R.J., McGuinness, D.L., and Resnick, L.A. (1989). "CLASSIC: A structural data model for

objects" in Proceedings of the 1989 A CM SIGMOD International Conference on Management of Data, 59-67.

Curtis, B., Kr_L,;ner,H., and iscoe, N. (1988). "A field study of the softwm'e design prtx:ess lk_rh'u'ge systems" in

Communications _?[the ACM, Vol. 3 !. No. 11, 1268-1287.

SEL-92-004page188

I)avis, A.M., Bersoff, I'.i 1.. and ('omcr, I-.R. (1988). "'A su'ategy for comparing alternative software development life

cycle mt_els" in IEI'-'E, Vol. 14. No. 10, 1453-1461.

Feng, G. (1993). "Maintaining the integrity of schema olknc}wledge-b,'L_ed management system by circumscription,"

submitted to Second Symposium on I,ogical Formalizations of Commonsense Reasoning, Austin, TX, J,'muary 11-13,
1993.

Iscoe, N., Williams, G.B., and Arango, G. (1991). "Domain modeling for software engineering" in Proceedings of 13th
International Conference on So.l'tware Engineering--Domain Modeling Workshop, Austin, TX, 1-4.

Lenat, D.B., Guha, R.V., Pittman, K., Pratti. !)., and Shepherd, M. (1990). Cyc: toward progrmns with common sense"

in CACM, Vol. 33, No. 8, 30-49.

McCracken, D. and Jackson, M. (1981). "'A minority dissenting position" in Systems Analysis and Design_A Foundation

for the 1980's (eds. Cottennan, W.W.. et al). Elsevier North-Holland, New York, 551-553.

Royce, W. (1970). "M,'maging the developmetu of large software systems: concepk_; and teclmiques," in Proceedings of
WESCON, August 1970.

Sw,'u'tout, W.R. and Balzer, R. (1982). "()n the inevitable inlertwining of specification ,'rod implexnentation'" in CACM,
Vol. 25, No. 7, 438-446.

SEL..92-004 page 189

Reuse -- A Knowledge-Based

Approach
(Application Domain Modeling)

Neil Iscoe, Zheng-Yang Liu, Guohui Feng

EDS Research

Austin Laboratory for

Software Engineering & Computer Science

O Copytighe 1992. EDS. All nl_ i_d; [_rm_l_ to _ mLnl _ u_lly gra_ed

Reuse -- A Knowledge-Based
Approach

(Application Domain Modeling)

• What We Mean By Application Domain Knowledge

• What Application Domain Models Are

• Why We Care

• Why You Should Care

• What We're Doing

0 Cop_|l_ 1992. EDS_ All hilum _. _ m cop? mu_ rut *xl_._ly Iprum_.

SEL-92-004 page 190

Why Do We Care About

Capturing & Reusing Knowledge?

I pplication DomainF16 Navigation __ _ I _///TJ

Information is lost
in the mapping

Implementation Domain

(x,y)

Cartesian Coordinates

X

Y
1

© C_eI_I 1_2. ED$ All hl_ tt_r_d: _ to _ Sust t¢ elol©tlv

MCC Field Study

An empirical study of large software projects.

• 9 companies

• 17 projects

Ranging in size from 24K to 10M LOC

• 97 interviews

• 3,500 pages of transcripts

Application Domain Knowledge

• was critical to the success (or failure) of the project

• was thinly spread throughout the organization

• was rarely written down in any concise form

SEL-92-O04 page 191

Application Knowledge is Rarely Concisely Stored

[
r

t Data
Models

Source Other

Code [_ SourceSpecs

Domain

xperts

O Celpynl_ 1992. EDS: All nl_m nnm_d: Pmm_lma w _PY IIm_ _ mFb_lY _

Requirements & Specifications Change Over Time
Static Specifications Don't Exist

• Using A Program Changes One's View Of The Problem

• People Change Their Minds

• The World Changes

Workload Modifications

New Technologies

Economic Changes

Le_ml Changes
Requirements/
Specifications

System Evolution Must Be
Handled In A Disciplined Fashion

©_k,992 _ ,_lnsImm_'_t pmmmemco_nmnW4npbc_ySnn_

SEL-92-004page192

Organization/Structure Is A Type Of Knowledge

Class]

O Co_nllt_ 1997. EDS_ All n_ _1: _ ;o _ _ be _lflm_llt V_'_md•

Real Models Can Be Very Complicated

SEL-92-004 page 193

Why Do We Care About Capturing &
Reusing Knowledge?

Application Knowledge is:

• Lost In The Mapping From Specification To Implementation

• Critical To The Success (Or Failure) Of Large Projects

• Thinly Spread Throughout Organizations

• Rarely Written Down In Any Concise Form

Requirements & Specifications Change

Organizational/Structural Knowledge Is Complex

Multiple Subsystems Require Multiple Views

O Coll_l_ ! 992. EDS: All nibu mKn_d: I_ w _ n_ he_I_:_Y

Old Way: Single Problem - Single Solution

Requirements/
Specifications/
Design

Implementation/
Production

SEL-92-004 page 194

New Way: Knowledge is Stored in A Model and Reused

Requirements _,& Specifications

,System Specification-,.*--

Reverse

Engineering

All Programs/Systems Single Program/System
Scoped by Application

0 Cop_qght I_Z EDS; All rigbtt _: Ihwmmaon to copy rn_ _ etplmOy grm_ed

Application Knowledge
Is Stored In A Domain Model

SEL-92-004 page 195

How Do We Get Application Domain

Knowledge Into Our Systems?

Old Way: Domain Knowledge is embedded in code.

• Hard to change the system

• Knowledge is hidden from view

New Way: Domain Knowledge is separated from the system.

* Can modify the system

• Knowledge is clearly separate

O COl_erllll11992. EDS, AI3 nltU _m.,id: _ ID (_p), _ I_ cz#_Uy I_

Application Domain Models

Are Formal Representations Of Knowledge

Designed To Achieve Specific Operational Goals:

• Requirements & Specifications
Eliciting, verifying, and formalizing software

requirements and specifications

• Automated Program Generation

Generating code from a system specification

• Reverse Engineering

Identifying the semantics of existing code

© CoW.i_ 19_.. BD$: Pal qllm .mm'_. I_lmel'l"xH° w_/m'm w tq _c"l)+ Ipmt_

SEL-92-004 page 196

Many Specification Models Can Be Created

From An Application Domain Model

Application Domain Model

Essential Characteristics

Application Domain Models & Specification Models:

• are formal structures,

• are computationally tractable,

• allow for reasoning and inference to

support specific operational goals.

O _p_lh_ i9_2. EDS_ All n_s m.n_: I_nw.slm m copy _a N _plicltb, Sm_

SEL-92-004 page 197

Benefits of Formalization

The basic goal is understanding the knowledge

•Concise Notations

-Assumptions

•Consensus Communication

.Consistency

-Completeness

-Inference

•Framework for Extensibility

0 COll_'ql_ IW2. EDS: All helm n..m,KI; pmi_mm _, copy _ k cxlx_c_ly |ra_

Consistency Is Maintained Using An Automated Theorem Prover

Motif
f_ user 1 I \

Server

(Truth
Maintenance [
System)

alsert/T_e/False

r_tract / ,

F Resolution 1_. Theorem"-4" Prover

SEL-92-004 page 198

Specification .Models Can Be Transformed
Into Other Specification Languages

r _ f Truth "_

] lvmu_ _ _ Maintenance |
I user l t \ I _. System 1/

Server serif T e/False
Ct" r_

" / I (R_e_°e:::m°n "_

_ [M:rti_] _ _. Prover J

Mathemati__ Other tion

EXPRESS Inca/CDM

O Copyright 1992. EDS: All rigl_ts _eu_d; pm*m_im to copy muu _ upkcitly g_sted

Application Domain Model
* Domain poltcte_Rules

• Domain_iSu'a_.m'e
* Cla_Attrilmt_:I_

O C._gyr_ht 1992. F_DS: All nlkB t1_c_d_ _wm_lie° W ¢_9Y m_t N aq¢_i_ grated

SEL-92-004 page 199

Instantiating Specification Models from a
Domain Model

• Applicable attributes

(applicable Class Attr) -9

3spec_model(used spec_model Class Attr)

• Must_have attributes

(must_have Class Attr) -->

Vspec_model(used spec_model Class Attr)

O CO_lr_fl 11992. F.J)5; All I'itlhlll _ I_mlmlgll Jml to copy _ be ¢zllilicifl y IIrMIc, d.

Instantiating Specification Models from a
Domain Model

• Conditional applicable attributes.

(cond_applicable Class Attr (P (a Class) val)_)

--)kfspec_mode 1

[(used spec_model (P (a Class) val) Attr)

-->(used spec_model Class a)]

% For example, (= (Gender Person) Female) is
interpreted as the subclass of Person within which the
value of attribute Gender is Female.

O Copylr_ht 1992. ED_: A.IJ nghu n_l_J: Pw'u_u_u_u mcogy _ be eJplic_l y Smlge_

SEL-92-004 page 200

Maternity Benefit $

Married Single Marital
Status

(applicable Person Maternity_benefitS)

0 Cop_nshl 1902. F,D$: All r_i_m m_d; I_wmm _ _ cogy _ k ¢_l_giU y grawd.

Maternity Benefit $

Marital

Married Single Status

Male Female Male Female Gender

(cond_applicable Person Maternity_benefitS

(= (Gender Person) Female)

0 _qk |_'_ EOS./_ I_u luu_l; Mnsmn w ¢qW e4m knMy_

SEL-92-004 page 201

Maternity Benefit $

Married

Male Female

Single

Male Female

/ <too / <zlo

Marital
Status

Gender

Days
Insurance

In Effect Prior

To Full Term

Delivery

(cond_applicable Person Maternity_benefitS

(& (= (Gender Person) Female)

(_ (DIPFT Person) 210)))

Maternity Benefit $

Married__Single

/
Male Female Male Female

Marital
Status

<21/_ z2

<Z ZZ <2 Z2 <2 >2 <Z >2 <2 ZZ <2 ZZ <2 >-2 <Z >Z . .
- - employea

(cond_applicable Person Maternity_benefitS

(& (= (Gender Person) Female)

(OR (> (DIPFT Person) 210)

(> (Years_employed Person) 2))))

O COFflnl_19_2,EDS:AllhSkwmmm'_t:pmm*ssmo0oeo91anmsk_ti_tJy |nmR_

Gender

0_ Days InsuranceIn Effect Prior

<21 Z210 To Full Term

f _ Delivery
Years

SEL-92-004 page 202

Maternity Benefit $

MaleZ_Female Gender

(_) /_ Years

>_2 <2 employed

/_ Days
Insurance

<210 >_1210 In Effect Prior

<_ _ To Full TermDelivery

(cond_applicable Person Maternity_benefitS

(& (= (Gender Person) Female)

(OR (_ (DIPFT Person) 210)
(_ (Years_employed Person) 2))))

Example: Maternity Benefits

Domain Model:

(applicable Person Marital_status)

(applicable Person Gender)

(applicable Person Years_employed)

(cond_required Person

Maternity_benefitS

(& (= (Gender Person) Female)

(OR (_ (DIPFT Person) 210)

(_ (Years_employed Person) 2))

SED92-O04 page 203

